Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5524, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448457

RESUMO

Radiation spectroscopy can be effective in identifying pollutants and species. By examining a photodiode, the frequency peaks obtained from the analysis, and the range in which the cell flame is converted to a surface flame, we obtained the value ratio of the cell flame to the surface flame in the range of 0.7-0.74 in different powers. The frequency peak in this range decreases from the maximum value of 9.9823 Hz to its minimum value of 9.058 Hz in different powers. By analyzing the temperature compared to the frequency peak, we found that in the range of equivalence ratio 0.7-0.75, the frequency peak decreases from 9.5 to 9.9 Hz to 8.7-9 Hz. The temperature has an increasing behavior, and in the equivalence ratio, the temperature is in the range of 1400-1500 °C, i.e., at its maximum value. We observed the cell formation process and its conversion to surface flame by flame detection. The flame height in the cellular and superficial regions is in the range of 0.65-0.85, which is the minimum flame height of 3-10 mm, and NO and CO were examined in the ratio of different equations and compared with temperature. In the ratio equivalence ratio of 0.77-0.81 in the temperature range of 1500 °C (maximum), the value of NO is about 16 ppm (maximum), and the value of CO is about 2 ppm (minimum). That is, when the temperature is at its maximum, it becomes CO minimum and NO maximum. This can be used for different applications such as similar and industrial burners.

2.
Sci Rep ; 13(1): 3213, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828913

RESUMO

Circulating tumor cells (CTCs) are scarce cancer cells that rarely spread from primary or metastatic tumors inside the patient's bloodstream. Determining the genetic characteristics of these paranormal cells provides significant data to guide cancer staging and treatment. Cell focusing using microfluidic chips has been implemented as an effective method for enriching CTCs. The distinct equilibrium positions of particles with different diameters across the microchannel width in the simulation showed that it was possible to isolate and concentrate breast cancer cells (BCCs) from WBCs at a moderate Reynolds number. Therefore we demonstrate high throughput isolation of BCCs using a passive, size-based, label-free microfluidic method based on hydrodynamic forces by an unconventional (combination of long loops and U-turn) spiral microfluidic device for isolating both CTCs and WBCs with high efficiency and purity (more than 90%) at a flow rate about 1.7 mL/min, which has a high throughput compared to similar ones. At this golden flow rate, up to 92% of CTCs were separated from the cell suspension. Its rapid processing time, simplicity, and potential ability to collect CTCs from large volumes of patient blood allow the practical use of this method in many applications.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Linhagem Celular Tumoral , Separação Celular/métodos , Células Neoplásicas Circulantes/patologia , Microfluídica
3.
Sci Rep ; 12(1): 5882, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393485

RESUMO

A numerical study was conducted to investigate the ability of wavy microchannels to damp the temperature fluctuations generates in electronic devices. Five wavy patterns are considered with the amplitude and wavelength in the ranges of 62.5 to 250 µm and 1250 to 5000 µm, respectively to study the effect of governing phenomena of flow within wavy patterns on thermal-hydraulic performance. The flow regime is laminar and the Reynolds number is in the range of 300 to 900, and a relatively high heat flux of 80 W/cm2 is applied to the microchannels substrate. Also, variable flux condition is studied for heat fluxes of 80, 120, 160, 200, and 240 W/cm2 and for the most efficient wavy and straight microchannels. Results showed that the geometries with larger amplitude to wavelength ratio have a lower radius of curvature and larger Dean number, and as a result of transverse flow (secondary flow) amplification, they have enhanced heat transfer. Also, by comparing the ratio of the transverse velocity components to the axial component, it was found that by decreasing the radius of curvature and increasing the Dean number, transverse velocity increases, which intensifies the heat transfer between the wall and the fluid. The appraisement of the performance evaluation criterion (PEC) illustrates that the wavy case with an amplitude of 250 µm and wavelength of 2500 µm is the best geometry from the thermal-hydraulic point of view in the studied range. Finally, with variable flux condition, the wavy microchannel has responded well to the temperature increase and has created a much more uniform surface temperature compared to straight pattern. The proposed wavy pattern ensures that there are no hotspots which could damage the electronic chip. Presented wavy patterns can be used in heat sinks heat transfer enhancement to allow the chip to run in higher heat fluxes.

4.
Sci Rep ; 11(1): 16072, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373493

RESUMO

In recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...